Lithium fluoride material properties as applied on the NIRCam instrument

نویسندگان

  • E. Todd Kvamme
  • James C. Earthman
  • Douglas B. Leviton
  • Bradley J. Frey
چکیده

Single crystal Lithium Fluoride (LiF) has been base-lined as one of the optical materials for the Near Infra-Red Camera (NIRCam) on the James Webb Space Telescope (JWST). Optically, this material is outstanding for use in the near IR. Unfortunately, it has poor mechanical properties that make it very difficult for use in any appreciable size on cryogenic space based instruments. In addition to a dL/L from 300K to 30K of ~-0.48% and room temperature CTE of ~37ppm/K, LiF deforms plastically under relatively small stresses. This paper will discuss the heritage of LiF in space-based systems and summarize the mechanical and thermal material data for LiF that is available in the literature. New data will be presented relative to a design limit load for the material so that designers can use this material for space flight applications. Additional new data relative to the cryogenic index of refraction of the material over the near infrared is also provided.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Operated by the Association of Universities for Research in Astronomy, Inc., for the National Aeronautics and Space Administration under Contract Nas5-03127 Title: Self –calibration and the Dither Patterns for Nircam and Miri

1.0 ABSTRACT NIRCam and MIRI have recently put together sets of imaging dither patterns that have been optimized for the anticipated science goals of each instrument. The MIRI set contains patterns that are explicitly optimized for self-calibration, whereas the NIRCam patterns are all optimized for sub-pixel resolution, L-flat mitigation, and gap coverage, without the explicit goal of self-cali...

متن کامل

Theoretical Assessment of the First Cycle Transition, Structural Stability and Electrochemical Properties of Li2FeSiO4 as a Cathode Material for Li-ion Battery

Lithium iron orthosilicate (Li2FeSiO4) with Pmn21 space group is theoritically investigated as a chathode material of Li-ion batteries using density functional theory (DFT) calculations. PBE-GGA (+USIC), WC-GGA, L(S)DA (+USIC) and mBJ+LDA(GGA) methods under spin-polarization ferromagnetic (FM) and anti-ferromagnetic (AFM) procedure are used to investigate the material properties, includin...

متن کامل

Enhanced wettability and electrolyte uptake of coated commercial polypropylene separators with inorganic nanopowders for application in lithium-ion battery

In this research, inorganic material type and content influence on coating of commercially available polypropylene (PP) separator were studied for improving its performance and safety as lithium ion battery separator. Heat-resistant nanopowders of Al2O3, SiO2 and ZrO2 were coated using polyvinylidene fluoride (PVDF) binder. Coating effects on the separators morphology, wettability, high tempera...

متن کامل

Effect of Calcination Temperature and Li / TFA Molar Ratio on Morphology and Phase of Lithium Fluoride Nanoparticles Produced by Fluorolytic Sol-Gel Method

In this research, synthesis of lithium fluoride (LiF) nanoparticles  by fluorolytic sol-gel method has been studied. Moreover, the effect of lithium ion to fluorine source molar ratio and calcination temperature on particle size and phase of LiF nanoparticles were investigated. Lithium acetate (C2H3LiO2), trifluoroacetic acid (TFA), ethylene glycol monobutyl ether and oleic acid were used as so...

متن کامل

A high performance lithium-ion battery using LiNa0.02K0.01FePO4/C as cathode material and anatase TiO2 nanotube arrays as anode material

In this paper we report on a lithium ion battery (LIB) based on improved olivine lithium iron phosphate/carbon (LiFePO4/C) as cathode material and LiNa0.02K0.01FePO4/C  synthesized by sol-gel method and TiO2 nanotube arrays (TNAs) with an anatase phasesynthesized through anodization of Ti foil as an anode electrode. Crystallographic structure and surface morphology of the cathode and anode mate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005